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Designing	tomorrow’s	drugs	
	

Overview  
This	Practical	Guide	outlines	basic	computational	approaches	used	in	drug	discovery.	It	highlights	how	bioinformatics	can	be	harnessed	
to	design	drug	candidates,	to	predict	their	affinity	for	their	targets,	their	fate	inside	the	body,	their	toxicity	and	possible	side-effects.		

Teaching Goals & Learning Outcomes  
This	Guide	introduces	bioinformatics	tools	for	designing	candidate	drug	molecules,	and	for	predicting	their	likely	target	protein(s)	and	
their	drug-like	properties.	On	reading	the	Guide	and	completing	the	exercises,	you	will	be	able	to:		

• design	drug-candidate	molecules	using	the	structures	of	known	drugs	as	templates,	and	dock	them	to	known	protein	targets;	
• compare	the	protein	target-binding	strengths	of	drug	candidates	with	those	of	known	drugs;	
• calculate	properties	of	drug	candidates	and	infer	whether	they	need	chemical	modification	to	make	them	more	drug-like;	
• predict	the	protein(s)	that	a	drug	candidate	is	likely	to	target;	
• create	molecular	fingerprints	for	known	drugs,	and	use	these	to	quantify	their	similarity. 

1 Introduction  

Over	the	past	century,	the	design	and	production	of	drugs	has	had	
a	beneficial	impact	on	life	expectancy	and	quality1,2.	However,	drug-
discovery	projects	are	slow	and	expensive:	the	design	and	develop-
ment	 process	 has	 been	 estimated	 to	 cost	 >1	 billion	 dollars	 and	 to	
take	 at	 least	 10	 years	 to	 complete3,4.	 Despite	 this	 labour-intensive	
process,	 very	 few	 projects	 successfully	 lead	 to	 the	 release	 of	 new	
drugs5,6.	 Several	 technologies	 have	 been	 introduced	 to	 reduce	 the	
duration,	 cost	and	attrition	 rates	of	 these	projects:	one	of	 these	 is	
Computer-Aided	 Drug	 Design	 (CADD)7-10.	 CADD	 uses	 computing	
resources,	algorithms	and	3D-visualisation	to	help	create	or	modify	
molecules,	and	rationalise	the	design	process.		
Nature	has	been	 the	most	 important	 source	of	medicinal	agents	

for	centuries.	Many	useful	drugs	have	been	developed	from	plants:	
consider,	 for	 example,	 morphine	 derived	 from	 the	 opium	 poppy	
(Papaver	somniferum),	used	for	pain	management;	quinine	from	the	
Cinchona	 tree’s	 bark,	 used	 as	 an	antimalarial	 drug	 and	muscle	 re-
laxant;	and	paclitaxel	(also	known	as	taxol)	from	the	Pacific	yew	tree	
(Taxus	 brevifolia),	 used	 for	 cancer	 therapy.	 Natural	 molecules	 are	
still	 a	 major	 source	 of	 inspiration	 for	 drug	 design,	 but	 only	 5%	 of	
small-molecule	drugs	developed	in	recent	decades	are	purely	natu-
ral	 products,	 unmodified	 in	 structure;	 the	 rest	 are	 natural-product	
derivatives	containing	synthetic	modifications	(27%),	synthetic	mol-
ecules	inspired	by	natural	products	(35%),	and	totally	new	synthetic	
compounds	(33%)11.	In	other	words,	95%	of	new	drugs	have,	at	the	
least,	 necessitated	 chemical	 modification	 either	 to	 increase	 their	
target	 affinity	 and	 selectivity,	 to	 correct	 their	Absorption,	Distribu-
tion,	Metabolism	or	Excretion	 (ADME)	and	 toxicity	problems,	or	 to	
circumvent	 Intellectual	 Property	 (IP)	 issues.	 Although	 serendipity	
has	 had	 an	 important	 role	 in	many	 therapeutic	 advances,	 rational	
design	has	become	a	major	factor	in	developing	new	agents12;	con-
sequently,	the	vast	majority	of	drugs	developed	in	recent	years	have	
benefited	to	various	extents	from	computer-aided	approaches7.	 
This	Guide	explores	some	of	 the	challenges	encountered	 in	drug	

discovery	and	development,	and	 the	 role	played	by	CADD.	 It	 intro-
duces	 the	basics	of	 drug	design,	 and	allows	anyone	with	 access	 to	

simple	computational	methodologies	to	conceive	and	evaluate	mol-
ecules	for	their	potential	to	become	drugs13.	Although	macromolec-
ular	 entities	 (e.g.,	 like	 antibodies)	 can	 act	 as	 therapeutic	 agents,	
here	we	consider	drugs	as	 small	organic	molecules	 (less	 than	~100	
atoms)	 that	activate	or	 inhibit	 the	 functions	of	proteins,	ultimately	
with	therapeutic,	prophylactic	or	diagnostic	benefits	to	patients.				

2 About this Guide 

This	Guide	 introduces	simple	computational	approaches	for	drug	
discovery.	 It	 discusses	 what	 drugs	 are,	 how	 they	 work	 and	 where	
they	 come	 from,	 and	 how	 to	 select	 the	 best	 candidates.	 Exercises	
are	 provided	 both	 to	 allow	 visualisation	 of	 candidate	 molecules	
docking	with	 known	 protein	 targets,	 and	 to	 predict	 their	 chemical	
properties	and	likely	fate	(and	toxicity)	in	the	body.	Throughout	the	
text,	key	terms	–	rendered	in	bold	type	–	are	defined	in	boxes.	Addi-
tional	information	is	provided	in	figures	and	supplementary	boxes.	

KEY	TERMS	

ADME	(Absorption,	Distribution,	Metabolism,	Excretion):	properties	
that	are	used	to	investigate	how	a	molecule	is	processed	in	the	body	
&	hence	to	determine	its	suitability	as	a	drug	

Amino	acid:	an	organic	molecule	 containing	 carboxylic	 acid	 (COOH)	&	
amine	(NH2)	functional	moieties.	There	are	20	common,	naturally	oc-
curring	amino	acids	that	constitute	the	building-blocks	of	proteins	

Antibodies:	 large	 proteins	 produced	 by	 the	 immune	 system	 to	 fight	
foreign	entities,	such	as	disease-causing	bacteria	&	viruses,	or	toxins	

Antimalarial:	an	anti-parasitic	chemical	used	to	treat	or	prevent	malaria	
Intellectual	 Property	 (IP):	 asset	 or	 product	 derived	 from	 the	 human	

intellect	(such	as	a	patent,	copyright,	etc.)	that	may	be	protected	by	
law	&	used	for	commercial	gain	

Prophylactic:	an	action	or	medicine	used	to	prevent	disease	
Protein: a macromolecule	 comprising	one	or	more	amino	acid	chains;	

they	are	essential	for	the	construction	&	activity	of	all	biological	enti-
ties	(cells,	virus,	etc.)	

Serendipity:	a	beneficial	occurrence	that	happens	by	chance,	a	 ‘happy	
accident’	
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3 What are drugs & drug targets? 

In	our	context,	drugs	are	small	molecules	that	bind	to	a	target	–	
generally	a	target	protein	–	somewhere	in	the	body,	and,	 in	so	do-
ing,	modify	 its	 actions.	 Proteins	 are	 large	molecules	 (with	 typically	
thousands	or	tens	of	thousands	of	atoms)	comprising	chains	of	ami-
no	acids,	 like	beads	on	a	necklace;	 these	molecular	chains	can	 fold	
back	 upon	 themselves	 to	 form	 specific	 3D	 shapes	 that	 depend	 on	
their	amino	acid	sequences,	as	shown	in	Figure	1.		

Figure	1	Proteins	&	their	component	amino	acids.	A	protein	is	like	a	
string	of	beads	folded	over	onto	itself.	Here,	the	amino	acid	‘beads’	are	
denoted	by	a	single-letter	code:	G,	D,	F…	etc.	(see	box	below	for	details).		
	
Amino	acid	residue	notation	

Figure	 1	 shows	 part	 of	 a	 protein	 sequence	 depicted	 using	 a	 single-
letter	code,	where	each	of	the	letters	represents	one	of	the	20	naturally	
occurring	amino	acids.	This	single-letter	code	is	detailed	here.	

Code	 Amino	acid	 Code	 Amino	acid	 Code	 Amino	Acid	

G	 Glycine	 C	 Cysteine	 Q	 Glutamine	

A	 Alanine	 F	 Phenylalanine	 N	 Asparagine	

V	 Valine	 Y	 Tyrosine	 E	 Glutamic	Acid	

L	 Leucine	 W	 Tryptophan	 D	 Aspartic	Acid	
I	 Isoleucine	 H	 Histidine	 T	 Threonine	

P	 Proline	 K	 Lysine	 S	 Serine	

M	 Methionine	 R	 Arginine	 	 	
?	

Collectively	 proteins	 perform	 thousands	 of	 different	 biological	
functions	 in	 the	 body:	 from	 regulation	 and	 repair,	 transport	 and	
immune	 responses,	 to	 digestion,	 vision	 and	 breathing	 –	 they	 are	
essential	 building-blocks	 of	 life.	 Cells	 only	 make	 the	 proteins	 they	
need:	each	cell	contains	around	10,000	different	proteins;	and	each	
protein	may	be	present	 in	100	 to	10	million	copies	 (e.g.,	 there	are	
250	million	haemoglobin	proteins	in	a	single	red	blood	cell).	
Protein	 functions	depend	on	 their	amino	acid	sequences	and	3D	

structures.	 Most	 proteins	 don’t	 function	 in	 isolation,	 but	 work	 in	
concert	with	 a	 range	 of	 other	 proteins	 and	 small	molecules.	 Small	
molecules	(e.g.,	vitamins,	sugar,	oxygen,	water,	 lipids)	tend	to	bind	
at	particular	 locations	of	 the	protein	surface	–	 their	so-called	bind-
ing-sites.	 The	 shapes	 and	 properties	 of	 binding-sites	 determine	
whether	and	which	molecules	can	fit	inside	by	‘complementarity’.	

3.1 Proteins & disease 
People	 fall	 ill	 for	many	 reasons:	 e.g.,	 if	 too	 little	 of	 a	 particular	

protein	 is	available	 for	 the	body	to	use;	 if	 too	much	of	a	protein	 is	
available	for	the	body	to	be	able	to	use;	 if	a	protein’s	activity	 is	al-
tered	 in	 some	way;	 if	 a	protein’s	 structure	 is	 altered	as	 a	 result	of	
mutation;	and	so	on.	Scenarios	like	this	result	in	a	host	of	diseases,	
ranging	 from	 diabetes,	 cancer	 and	 Alzheimer’s,	 to	 arthritis,	 high	
blood	 pressure	 and	 heart	 disease,	 amongst	many	 others.	 Knowing	
this	allows	 the	discovery	of	drugs	 to	 treat	 specific	diseases,	by	 tar-
geting	particular	proteins	–	 indeed,	drugs	 in	use	today	target	more	
than	 750	 different	 human	 proteins14.	 Other	 drugs	 can	 also	 target	
bacterial	or	viral	proteins.	

4 How are drugs designed? 

4.1 Where do drug molecules come from? 
Of	the	drugs	approved	for	therapeutic	use	today,	most	(95%)	are	

entirely	synthetic	or	are	chemical	modifications	of	natural	products.		
Potential	drugs	are	often	designed	to	target	protein	binding-sites.	

However,	 there	 are	 theoretically	 1060	 small	 drug-like	 molecules	
(virtual	compounds)	in	‘chemical	space’15.	So	where	do	we	start?	In	
practice,	only	some	tens	to	hundreds	of	millions	of	these	have	been	
synthesised	as	real	entities	–	but	that’s	still	a	lot	of	molecular	struc-
tures	 to	 consider;	 to	 date,	 only	 about	 2,000	 of	 those	 have	 been	
approved	 as	 drugs.	 This	 gives	 an	 idea	 of	 how	 difficult	 it	 is	 to	 find	
molecules	 with	 suitable	 properties	 to	 become	 new	 and	 effective	
drug	molecule,	like	those	illustrated	in	Figure	2.	

4.2 How to select the best drug candidates 
To	help	with	the	challenge	of	finding	the	small	molecule	that	best	

fits	 a	 target	 protein’s	 binding-site	 from	 the	 billions	 of	 possibilities	
available,	 various	 computational	 tools	 can	 be	 used;	 having	 discov-
ered	such	a	molecule,	computational	tools	can	also	be	used	to	opti-
mise	its	shape	and	properties	to	create	the	best	fit	with	the	target.	
This	approach	is	termed	Computer-Aided	Drug	Design,	or	CADD.	
Whether	an	optimised	candidate	molecule	will	then	go	on	to	be-

come	a	new	drug	depends	on	several	factors.	Many	laboratory	tests	
have	to	be	performed	(e.g.,	to	investigate	ADME	and	toxicity	issues),	
followed	 by	 long	 clinical	 trials,	 in	 order	 to	 determine	whether	 the	
molecule	 actually	 treats	 the	 disease	 efficiently,	 safely	 and	 at	what	
dose	 (i.e.,	 with	 few	 undesirable	 side-effects).	 Note,	 clinical	 trials	
have	large	attrition	rates,	and	only	~10%	of	trialled	compounds	are	
ultimately	 officially	 approved	 as	 drugs.	 Overall,	 from	 thousands	 of	
small	 molecules	 actually	 synthesised,	 only	 one	 is	 chosen	 and	 ap-
proved	for	therapeutic	use.	From	start	to	finish,	this	process	usually	
takes	around	10	years	to	complete,	at	a	cost	of	around	a	billion	US	
dollars.	Despite	the	time,	cost	and	risk	involved,	dozens	of	new	mol-
ecules	hit	the	market	every	year.	

KEY	TERMS	

Drug-like	molecule:	 chemical	 compound	 showing	 similar	 properties	
(in	terms	of	size,	polarity,	etc.)	to	existing	oral	drugs	

Haemoglobin:	iron-containing,	oxygen-carrying	protein	of	the	blood	
Lipid:	a	generic	name	for	organic	molecules	that	aren’t	water-soluble	

(e.g.,	fat,	oil,	steroids,	components	of	cell	membranes)	
Mutation:	a	change	in	genetic	material	(e.g.,	a	nucleotide	change	in	a	

gene,	or	addition/loss	of	a	chromosome	or	part	of	a	chromosome)	
Target	 protein:	 a	 protein	 that’s	 involved	 in	 a	 disease	 &	 has	 been	

defined	as	a	target	for	a	drug	
Virtual	compound:	a	chemical	structure	corresponding	to	a	theoreti-

cal	compound	that	hasn’t	yet	been	synthesised	(often	compiled	in	
chemical	libraries	for	screening	in	drug-discovery	projects)	
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Figure	2 Chemical	diversity	of	drug	molecules	exemplified	by	the	10	
most-prescribed	medicines	in	the	UK	in	2019.	The	name	and	structure	of	

the	active	ingredient,	&	the	main	therapeutic	indications	are	given.	

5 Basic principles of CADD 

CADD	technologies	can	be	broadly	classified	into	structure-based	
and	ligand-based	approaches.		

5.1 Structure-based approaches 
Structure-based	CADD	approaches	use	 the	3D	structures	 of	pro-

tein	 targets,	 where	 these	 (or	 reliable	 models)	 are	 available14.	 The	
cornerstone	of	 structure-based	drug	design	 is	 generally	 considered	
to	be	molecular	docking.	Amongst	 the	most	well-known	successful	
applications	of	this	approach	are	the	anti-influenza	drugs	zanamivir	
(brand	name	Relenza)	and	oseltamivir	(brand	name,	Tamiflu)15,16.		
The	main	rationale	of	structure-based	drug	design	relies	on	how,	

and	how	strongly,	a	given	small	molecule	will	bind	to	a	chosen	tar-
get:	 the	most	 likely	 geometry	and	position	of	 small	molecules	at	 a	
protein	 surface	 can	 be	 calculated	 using	 a	 docking	 program	 (e.g.,	
SwissDock.ch17,	Autodock18,	Autodock	Vina19)	to	predict	the	interac-
tions	between	the	molecular	partners8;	the	strength	of	their	binding	
can	be	evaluated	using	a	score	 (there	are	several	scoring	 functions	
available	to	estimate	the	binding	free	energy).	The	docking	score	is	a	
parameter	that’s	optimised	when	designing	a	potent	drug	molecule.		
In	essence,	this	approach	hinges	on	optimising	molecular	recogni-

tion	 (fit,	 complementarity)	 and	 binding	 affinities	 (score,	 free	 ener-
gy),	 identifying	molecules	whose	shape	and	properties	are	comple-

mentary	 to	 a	 protein	 target	 binding-site.	 This	 molecular-docking	
technique	 opens	 the	 road	 to	 in	 silico	 design	 and	 optimisation	 of	
virtual	 compounds,	 which	 is	 the	 subject	 of	 the	 drug-design-
workshop	educational	website	you’ll	use	during	the	exercises.	

5.2 Ligand-based approaches 
Ligand-based	approaches	rely	on	the	information	contained	in	the	

chemical	 structures	 or	 physical	 properties	 (e.g.,	 size,	 lipophilicity,	
polarity)	 of	 other	 molecules	 that	 are	 known	 to	 bind	 to	 a	 chosen	
protein	target.	This	information	can	be	analysed	and	used	to	create	
predictive	 models	 using	 machine-learning	 methods:	 these	 are	
known	 as	 Quantitative	 Structure−Activity	 Relationships	 (QSAR),	 if	
the	aim	 is	 to	create	new	 ligands	and/or	 to	predict	 their	activity;	or	
Quantitative	 Structure−Property	 Relationships	 (QSPR),	 if	 the	 aim	 is	
to	predict	behaviours	related	to	the	fate	of	the	molecule	in	the	body	
–	 the	 so-called	pharmacokinetic	 (PK)21	 properties	–	which	are	 fun-
damental	 in	drug	design.	Although	high	affinity	for	a	protein	target	
is	 essential,	 it	 isn’t	 sufficient	 for	 a	 designed	 small	molecule	 to	 be-
come	a	drug:	to	achieve	a	therapeutic	effect,	molecules	must	reach	
their	targets	in	the	body,	and	stay	there	long	enough	in	a	bioactive	
form	to	exert	their	biological	effects.	Thus,	for	efficient	drug	design,	
it’s	important	to	predict	PK	behaviours	with	CADD	approaches.		
Other	ligand-based	methods	follow	the	principle	that	small	mole-

cules	that	are	similar	are	more	likely	to	be	active	on	the	same	target.	
Such	 approaches	 can	 be	 used	 to	 perform	 virtual	 screening	 or	 re-
verse	 screening22−24.	 Reverse	 screening	 can	 help	 to	 predict	 both	
primary	 targets	 and	 potential	 secondary	 targets	 –	 i.e.,	 proteins	 to	
which	a	small	molecule	may	bind,	despite	having	been	optimised	to	
target	another	macromolecule.	Secondary	targets	are	often	the	root	
of	 adverse	 drug	 side-effects,	 but	 they	 can	 also	 open	 the	 way	 to	
what’s	known	as	drug	re-purposing25,26.	

KEY	TERMS	

3D	structure:	the	shape	a	protein	or	a	small	molecule	adopts	in	space		
Docking	 program:	 a	 software	 tool	 designed	 to	 predict	 how	 and	 how	

strong	small	molecules	(e.g.,	such	as	drug	candidates)	bind	to	a	target	
(usually	a	protein)	of	known	(or	reliably	modelled)	3D	structure		

Drug	 re-purposing:	 an	 ensemble	 of	 strategies	 to	 evaluate	 the	 uses	 of	
existing	drugs	for	new	therapeutic	purposes		

Ligand:	a	molecule	that	binds	to	another	molecule	&	serves	a	biological	
purpose	(e.g.,	a	drug	binding	to	a	target	protein)	

Lipophilicity:	 the	 ability	 of	 molecule	 to	 partition	 between	 fats,	 oils,	
lipids	&	water;	this	property	is	crucial	to	cross	biological	membranes	
(e.g.	gastro-intestinal	wall,	blood-brain	barrier	or	cell	membrane)	

Machine	learning:	a	computer	algorithm	that	discovers	how	to	perform	
tasks	(often	from	a	set	of	training	data),	without	having	been	explicit-
ly	 programmed	 to	 do	 so.	 Here,	 for	 Structure-Activity	 relationships,	
the	algorithm	is	used	to	find	a	mathematical	equation	linking	the	ac-
tivity	of	the	molecules	with	their	properties	

Molecular	docking:	 a	 computational	method	used	 to	predict	how	 two	
or	more	molecules	(e.g.,	such	as	a	drug	&	its	target	protein)	interact	

Pharmacokinetics	 (PK):	 study	of	 the	 fate	of	a	drug	molecule,	 from	the	
point	of	administration	to	the	point	of	elimination	from	the	body,	to	
determine	 how	 the	molecule	 has	 been	 Absorbed,	 Distributed,	Me-
tabolised	&	Excreted	(ADME)	

Reverse	 screening:	 deducing	 the	 potential	 protein	 targets	 of	 a	 given	
molecule	 by	 identifying	 similar	 compounds	whose	 activity	 is	 known	
experimentally		

Virtual	screening:	a	computational	method	to	search	for	molecules	that	
are	similar	to	known	active	compounds	&	are	hence	potentially	also	
active	on	the	same	protein	target	
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A	 typical	 CADD	workflow	 is	 shown	 in	 Figure	 3.	 Here,	molecules	
can	be	selected	that	both	have	the	highest	affinity	(i.e.,	best	docking	
score),	and	are	as	specific	as	possible,	 for	their	primary	target,	and	
have	potential	to	become	a	drug:	i.e.,	molecules	that	are	sufficiently	
permeable	 to	 be	 taken	 orally	 for	 the	 comfort	 and	 compliance	 of	
patients,	have	the	best	toxicity	profiles,	don’t	 induce	adverse	drug-
drug	interactions	via	the	cytochrome	P450	system,	and	so	on.	

Figure	3	Typical	CADD	cycle.	A	new	molecule	is	created	&	docked	to	its	
protein	target,	its	interactions	are	analysed,	its	binding	strength	scored,	
&	its	selectivity	(e.g.,	calculated	by	SwissTargetPrediction)	&	drug-like	
properties	(e.g.,	predicted	by	SwissADME)	are	estimated	to	assess	its	

viability	as	a	drug	candidate.	

6 Hands-on drug design 

We’re	now	going	to	enter	the	iterative	cycle	of	designing	and	op-
timising	a	molecule	to	make	 it	a	strong	 ligand	for	a	selected	target	
protein:	 specifically,	 cyclooxygenase	 (also	 known	 as	 COX).	 In	 hu-
mans,	COX	exists	in	two	isoforms,	which	are	referred	to	as	COX1	and	
COX2.	These	are	very	similar,	but	have	significantly	different	biologi-
cal	 functions:	COX1	 is	constitutively	expressed	and	produces	pros-
taglandins	 to	 fine-tune	 physiological	 processes	 (e.g.,	 it	 plays	 an	
important	 role	 in	blood	coagulation	and	 in	protecting	 the	 stomach	
lining);	 by	 contrast,	 COX2	 is	 expressed	 locally	 in	 the	 event	 of	 in-
flammation,	 producing	 inflammatory	 prostaglandins	 that	 mediate	
responses	 to	 physiological	 stresses,	 such	 as	 inflammation,	 and	 is	
directly	responsible	for	the	sensation	of	pain.		
Today,	the	most	popular	drug	taken	worldwide	is	Aspirin®,	whose	

active	molecule	–	acetylsalicylic	acid	–	was	synthesised	at	the	end	of	
the	19th	century	from	salicylic	acid,	a	natural	product	extracted	from	
the	bark	of	 the	willow	tree.	Willow	bark	has	been	known	since	an-
tiquity	for	its	effects	in	reducing	fever.	By	the	mid-18th	century,	bark	
extracts	 were	 also	 recognised	 for	 their	 efficacy	 in	 combating	 pain	
and	 inflammation.	However,	 researchers	 discovered	 that	 some	ex-
tracts	caused	digestive	problems,	such	as	gastric	irritation,	bleeding	
and	 diarrhoea,	 and	 even	 death	 when	 ingested	 in	 high	 doses.	 In	
1897,	 scientists	 began	 to	 investigate	 acetylsalicylic	 acid	 as	 a	 less-
irritating	substitute	for	common	salicylate	medicines,	and	found	the	
way	to	synthesise	 it.	By	1899,	the	Bayer	company	had	branded	the	
new	drug	Aspirin®,	and	had	put	it	into	worldwide	circulation.	
	Acetylsalicylic	 acid,	 when	 taken	 orally,	 inhibits	 both	 COX1	 and	

COX2,	 and	 stops	 the	 synthesis	 of	 all	 prostaglandins.	 In	 doing	 so,	 it	
has	desirable	painkiller,	anti-inflammatory	and	anti-fever	effects.	As	

a	positive	consequence	of	its	non-selectivity	of	targets,	Aspirin®	is	an	
early	example	of	drug	re-purposing,	being	routinely	administered	as	
a	 platelet	 anti-aggregant.	 However,	 most	 of	 its	 numerous	 side-
effects,	such	as	gastric	ulceration,	are	unwanted.	
Seeking	to	overcome	these	issues,	another	class	of	drugs	was	dis-

covered:	 the	Non-Steroidal	 Anti-Inflammatory	Drugs	 (NSAIDs).	 Like	
Aspirin,	the	first	NSAIDS	inhibited	COX1	and	COX2,	and	were	hence	
termed	 ‘non-selective	 inhibitors’.	 Later,	 molecules	 that	 specifically	
inhibit	 COX2	 were	 designed;	 these	 have	 the	 desired	 anti-

inflammatory	effects	without	the	gastric	side-effects	–	see	Figure	4.	

Figure	4	Selective	&	non-selective	anti-inflammatory	drugs	&	their	
gastric	side-effects.	Non-selective	drugs	target	COX1	&	COX2,	but	have	
gastrointestinal	side-effects;	selective	drugs	target	only	COX2,	with	fewer	

gastric	side-effects.	

In	 the	following	exercises,	we	shall	use	molecular	docking	to	de-
sign	a	drug	that	targets	COX.	We’ll	then	compare	the	effectiveness,	
safety	and	specificity	predictions	of	this	new	molecule	with	the	over-
the-counter	drug,	Ibuprofen.	Ibuprofen,	an	NSAID	that	inhibits	COX1	
and	COX2,	is	used	routinely	for	short-term	treatments	against	fever	
or	pain	(headaches,	toothache,	muscle	pains,	etc.).	Although	proven	
a	 safe	medication,	 like	 Aspirin,	 Ibuprofen	 can	 sometimes	 have	 ad-
verse	 side-effects	 if	 taken	 at	 high	 dose	 and	 long-term,	 including	
potentially	 stomach	 or	 intestinal	 bleeding.	 Let’s	 imagine	 that	 your	
aim	is	to	investigate	whether	it’s	possible	to	optimise	the	Ibuprofen	
molecule	for	better	selectivity	towards	COX2	versus	COX1.	

6.1 Design & dock your own molecule 
To	begin	to	answer	this	question,	we’ll	use	an	online	educational	

docking	 tool	 and	 CADD	 websites	 from	 the	 SIB	 Swiss	 Institute	 of	
Bioinformatics.	A	simplified	view	of	the	educational	tool’s	workshop	
for	anti-inflammatory	drugs	is	shown	in	Figure	5.	

KEY	TERMS	

Constitutively	expressed:	being	produced	at	a	constant	 rate	&	 in	con-
stant	amount	in	a	given	cell,	regardless	of	the	cell’s	metabolic	state		

Cytochrome	P450:	an	enzyme	whose	main	role	is	to	chemically	modify	
foreign	 chemicals	 in	 order	 to	be	 able	 to	 clear	 them	easily	 from	 the	
body;	they	are	of	particular	interest	in	medicine	for	their	role	in	me-
tabolising	exogenous	molecules,	like	drugs	

Prostaglandin:	 physiologically	 active	 lipid	 compounds	 involved	 in	 in-
flammation	&	the	amplification	of	pain	signals		

SIB	 Swiss	 Institute	 of	 Bioinformatics:	 a	 not-for-profit	 foundation	 that	
federates	bioinformatics	activities	across	Switzerland,	providing	bio-
informatics	resources	to	the	life-science	research	community	
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Figure	5	Design	&	docking	of	drug	molecules	with	target	proteins.	
Drugs	(right-hand	side)	are	docked	by	dragging	&	dropping	them	onto	
the	protein	targets:	COX1,	COX2.	A	molecular	‘sketcher’	lets	you	‘Design	
your	own	molecule’	from	scratch	or	use	one	of	the	drugs	as	template.	

EXERCISES	

1	 Open	 a	 browser	 (preferably	 Firefox	 or	 Google	 Chrome)	 &	 visit	 the	
following	 website:	 www.drug-design-workshop.ch/cox.php	 (you	
might	need	to	allow	‘pop-up	windows’).	

2	To	design	your	own	molecule,	click	on	the	‘Design	your	own	molecule’	
box.	This	opens	a	‘sketcher	box’	in	which	to	start	the	design	process.	
Let’s	begin	by	using	Ibuprofen	as	the	template	structure.	

3	Click	on	the	red	‘down	arrow’	–	top	right	of	Ibuprofen’s	box.	This	cop-
ies	the	structure	into	the	‘sketcher’	as	the	template	for	modification	
(for	help,	see	www.drug-design-workshop.ch/helpsketcher_videos.php).		

4	 First,	 let’s	 add	 a	 ‘chloro’	 substituent	 in	 the	 ‘ortho’	 position	 of	 Ibu-
profen’s	aromatic	ring:	to	do	this,	refer	to	Figure	6.	Add	a	single	bond	
at	the	correct	position:	click	1	then	2,	as	indicated	in	Figure	6.	

5	 This	 adds	 a	methyl	 group	 (CH3).	 Replace	 this	 with	 a	 chlorine	 atom:	
click	3	then	4	(Figure	6).	Your	new	‘o-chloroibuprofen’	is	ready.		

6	Finally,	click	on	the	‘Done’	button	beneath	the	sketcher	to	transfer	the	
modified	structure	into	‘Your	own	molecule’	box.		

Figure	6	Designing	a	new	drug	candidate	from	a	known	template.	The	
‘sketcher’	allows	a	new	compound	to	be	designed	or	a	template	structure	
to	be	modified,	by	adding	bonds,	atoms	&	chemical	groups,	or	by	replac-
ing	selected	atoms	with	options	from	its	toolbars.	Here,	a	‘chloro’	sub-
stituent	is	added	to	the	aromatic	ring	of	Ibuprofen’s	molecular	template.		

Once	you’ve	designed	your	own	molecule,	you’re	ready	to	inves-
tigate	 how	 it	 docks	 with	 the	 target	 proteins,	 COX1	 or	 COX2.	 The	
docking	 tool	 evaluates	 hundreds	 of	 thousands	 of	 different	 geome-
tries	 and	positions	of	 the	 ligand	within	 the	protein;	 it	 then	 reveals	
the	most	probable	binding	mode	in	an	interactive	3D	display,	along-
side	 an	 estimation	 of	 the	 binding	 strength,	 rendered	 as	 a	 docking	
score	–	broadly	speaking,	the	larger	the	score,	the	better	the	ligand.	
The	score	of	your	molecule	is	set	in	the	context	of	the	relative	bind-
ing	strengths	of	a	range	of	known	drugs	 (as	shown	 in	Figure	7);	 it’s	
thereby	possible	to	compare	your	molecule’s	score	with	those	of	the	
reference	drugs.		

Results	COX2	for	o-chloroibuprofen 
Your	molecule	has	a	binding	score	of	7.9	

	

Results	COX1	for	o-chloroibuprofen 
Your	molecule	has	a	binding	score	of	8.1	

	

Figure	7	Calculated	binding	score	of	a	drug	candidate	relative	to	a	set	
of	reference	drugs.	The	drug	candidate	is	shown	in	the	centre	of	the	

figure	–	the	black	arrow	indicates	its	docking	score	with	target	proteins	
COX1	&	COX2	relative	to	the	reference	drugs.	Here,	the	drug	candidate	is	
o-chloroibuprofen,	a	modification	of	Ibuprofen’s	template	molecular	

structure,	&	the	binding	score	with	COX1	is	slightly	higher	than	that	for	
COX2.	More	detailed	analyses	(to	predict	possible	protein	targets	&	to	
estimate	the	molecule’s	fate	in	the	body)	can	be	carried	out	by	clicking	
on	the	links	to	the	software	tools	SwissTargetPrediction	&	SwissADME.	
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EXERCISES	

1	We	will	 now	explore	how	your	molecule	binds	 to	COX1	&	COX2,	&	
how	it	compares	to	Ibuprofen	docking	in	terms	of	binding	strength.	
Drag	&	drop	your	own	molecule’s	image	onto	the	3D	representation	
of	COX1	in	the	top	left-hand	panel.	

2	This	initiates	the	docking	calculations	on	a	remote	server,	which	may	
take	a	couple	of	minutes	to	run,	depending	on	the	load	on	the	serv-
er.	A	new	tab	opens	in	your	browser	to	let	you	monitor	the	progress	
of	the	calculations.	When	the	docking	is	complete,	click	on	‘here’	to	
access	the	results.	At	the	top	of	the	page,	you’ll	see	a	3D	representa-
tion	of	the	computed	binding	mode	between	your	molecule	&	COX1.	

3	 Use	 your	 mouse	 or	 track-pad	 to	 interact	 with	 the	 image.	 The	 col-
oured	ribbons	represent	the	secondary	structure	of	the	protein	(see	
Figure	8).	

4	Note	the	docking	score.	What	 is	the	score	of	your	molecule	relative	
to	Ibuprofen,	whose	score	is	7.8	on	COX1?	Is	it	better	or	worse?	

5	Return	to	the	first	tab	to	re-run	the	docking	calculations,	now	drag-
ging	&	dropping	your	molecule	onto	the	3D	representation	of	COX2	
(bottom	left-hand	panel).	

6	Once	completed,	note	the	docking	score	(refer	to	Figure	7).	What	is	
the	 binding	 score	 of	 your	 drug	 candidate	molecule	 relative	 to	 Ibu-
profen,	whose	score	is	7.6	on	COX2?	Is	it	better	or	worse?	

7	 Overall,	 the	 selectivity	 of	 your	 newly	 designed	 molecule	 for	 COX2	
over	COX1	is	worse	than	Ibuprofen.	Optimisation	of	molecules	is	of-
ten	very	empirical	(trail-&-error).	Typically,	it’s	necessary	to	go	back	
to	the	drawing	board	(here,	the	‘sketcher’)	to	generate	another	hy-
pothesis	with	a	new	designed	molecule.	

	

Figure	8	Representation	of	the	3D	structure	of	the	anti-inflammatory	
drug,	Ibuprofen	bound	to	its	target	protein,	COX2.	The	Ibuprofen	ligand	
(seen	at	the	centre	of	the	image)	is	shown	in	ball-&-stick	representation,	
with	carbon	atoms	coloured	brown	&	oxygen	atoms	red;	the	coloured	
ribbons	represent	the	secondary	structure	of	the	protein:	α-helices	are	

shown	in	pink,	β-strands	in	yellow,	&	loops	in	grey.		

Having	designed	your	first	drug-like	molecule,	we’re	now	going	to	
investigate	what	happens	when	we	add	a	more	bulky	purely	carbon-
based	substituent	to	the	same	position	where	we	added	the	‘chloro’	
substituent	to	Ibuprofen	in	the	first	exercise.	

EXERCISES	

1	Return	 to	 the	 first	 tab,	&	 click	on	 ‘Your	own	molecule’	 to	open	 the	
sketcher	with	the	o-chloroibuprofen	you	created	previously.		

2	First,	 let’s	 replace	the	chlorine	atom	with	carbon,	&	then	add	three	
single	bonds	from	that	carbon	to	generate	three	methyl	groups:	 to	
do	 this,	 refer	 to	 Figure	 9	 (top	 panel).	 Your	 designed	 ‘o-
tertiobutylibuprofen’	is	ready.		

3	Click	on	the	‘Done’	button	beneath	the	sketcher	to	transfer	the	modi-
fied	structure	into	‘Your	own	molecule’	box.	

4	Dock	the	molecule	into	COX1	&	COX2	by	repeating	steps	1	to	5	of	the	
previous	 exercise.	 Note	 the	 binding	 score	 for	 each.	 What	 conclu-
sions	can	you	draw	regarding	the	selectivity	compared	to	Ibuprofen?		
	

 

 
Figure	9	Designing	a	new	drug	candidate	from	a	known	template.	The	
upper	panel	shows	addition	of	three	methyl	groups	to	the	‘ortho’	position	
of	Ibuprofen’s	aromatic	ring;	the	lower	panel	shows	replacement	of	the	
methyl	groups	with	an	even	bulkier	phenyl	group.	To	see	the	sketcher	in	
action,	visit	www.drug-design-workshop.ch/helpsketcher_videos.php.	

Overall,	 the	 selectivity	 of	 your	 second	 molecule	 for	 COX2	 over	
COX1	is	better	relative	to	Ibuprofen.	In	fact,	the	binding	strength	on	
COX1	is	slightly	less	than	Ibuprofen,	but	that	on	COX2	is	significantly			

KEY	TERMS	

α-helix:	region	of	a	protein	chain	that	forms	a	regular	helical	structure	
β-strand:	region	of	a	protein	chain	that’s	almost	fully	extended	
Secondary	structure:	the	local	structural	organisation	of	a	protein,	such	

as	helices,	beta	strands,	etc.	
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higher.	The	iterative	optimisation	cycle	now	begins:	i.e.,	we	continue	
with	the	hypothesis	by	adding	even	bulkier	substituents	at	the	same	
position,	as	this	appears	to	play	an	important	role,	favouring	binding	
to	COX2	while	having	a	negative	impact	on	binding	to	COX1.	
So,	having	designed	a	second	molecule	with	some	success,	we’re	

now	going	to	investigate	further	by	adding	an	even	bulkier	substitu-
ent	at	the	same	position	in	the	Ibuprofen	molecule.	

EXERCISES	

1	Return	 to	 the	 first	 tab,	&	 click	on	 ‘Your	own	molecule’	 to	open	 the	
sketcher	with	the	previously	created	o-tertiobutylibuprofen.		

2	 Let’s	 remove	 the	3	methyl	groups	 using	 the	 ‘rubber’	 tool	 (left-hand	
toolbar	of	sketcher)	&	then	add	a	phenyl	 ring	at	 the	same	position	
(bottom	toolbar	of	sketcher):	refer	to	Figure	9	(bottom	panel).	Your	
designed	‘o-phenylibuprofen’	is	ready.		

3	Click	on	the	‘Done’	button	beneath	the	sketcher	to	transfer	the	modi-
fied	molecule	into	‘Your	own	molecule’	box.	

4	Dock	the	molecule	into	COX1	&	COX2	by	repeating	steps	1	to	5	of	the	
earlier	 exercise,	 as	 before.	 Note	 the	 binding	 scores.	What	 conclu-
sions	can	you	draw	regarding	the	selectivity	compared	to	Ibuprofen?		

Overall,	the	selectivity	of	this	third	molecule	for	COX2	over	COX1	
is	 significantly	 better:	 the	 difference	 between	 the	 COX1	 and	 COX2	
docking	 scores	 has	 increased	 even	 more.	 The	 docking	 scores	 for	
each	of	the	drug-candidate	molecules	we’ve	investigated	so	far	are	
summarised	in	Table	1.	

Table	1	Summary	of	docking	scores	for	Ibuprofen	&	three	drug-
candidate	molecules	based	on	Ibuprofen’s	structural	template.	

Docking	
scores	

Ibuprofen	 o-chloro-
ibuprofen	

o-tertio-
butylibuprofen	

o-phenyl-
ibuprofen	

COX1	 7.8	 8.1	 7.9	 8.6	
COX2	 7.6	 7.9	 8.1	 9.5	

We	could	 continue	generating	more	hypotheses	 to	 try	 to	 create	
further	 molecules	 with	 better	 COX1-/COX2-binding	 affinities	 than	
Ibuprofen.	 However,	 we’re	 now	 going	 to	 explore	 other	 important	
aspects	 of	 drug	design	using	 the	 software	 tools	SwissTargetPredic-
tion	and	SwissADME:	the	former	predicts	the	most	probable	protein	
targets	for	a	drug	candidate;	the	latter	calculates	its	physicochemi-
cal,	pharmacokinetic	and	drug-like	properties,	thereby	allowing	you	
to	determine	 its	 likely	 fate	 in	 the	body:	e.g.,	 is	 it	well	 absorbed	by	
the	gastrointestinal	tract?	Does	it	reach	the	brain?	Is	it	toxic?	

6.2 Calculate your molecule’s ADME parameters  
To	explore	 these	questions,	 let’s	 take	a	closer	 look	at	 the	Swiss-

ADME	tool.	The	component	of	this	tool	that	allows	you	to	compute	
the	lipophilicity	and	polarity	of	a	small	molecule,	and	thus	to	predict	
its	 likely	brain	or	 intestinal	permeation,	 is	 called	BOILED-Egg	 –	Fig-
ure	10	shows	a	typical	output.	The	colour-coded	regions	(which	give	
the	 model	 its	 name)	 depict	 areas	 where	 those	 properties	 would	
allow	molecules	to	cross	specific	biological	barriers	(i.e.,	bowel	wall	
or	blood-brain	barrier).	The	position	of	 the	molecule	under	 investi-
gation	 is	 shown	 as	 a	 circle;	 its	 colour	 reflects	 the	 likelihood	 of	 it	
being	 a	 substrate	 for	 the	 one	 of	 the	major	 protein	 protecting	 the	
brain	 by	 pumping-out	 foreign	 substances,	 the	 P-glycoprotein	 1,	 or	
PGP.	The	graph	is	a	useful	tool,	allowing	intuitive	assessment	of	the	
types	 of	 chemical	modification	 needed	 to	 give	 a	molecule	 the	 de-
sired	absorption	and	distribution	properties.	
As	an	example,	anti-inflammatory	drugs	must	primarily	target	pe-

ripheral	 proteins.	 As	 such,	 and	 to	 avoid	 unwanted	 central	 effects,	
we	can	optimise	the	candidate	drug	structure	to	prevent	it	from	ac-

cessing	the	brain.	To	evade	the	BOILED-Egg’s	‘yolk’	region,	we	must	
increase	the	molecule’s	polarity.	To	do	this,	we	can	add	polar	atoms	
or	groups:	e.g.,	by	adding	OH	substituents	to	the	phenyl	ring	(Figure	
11).	You	can	apply	as	many	optimisation	cycles	as	necessary;	how-
ever,	the	impact	of	every	structural	modification	must	be	evaluated	
for	all	properties	(binding	and	selectivity	towards	COX2	and	COX1).	

Figure	10	Graphical	output	of	the	BOILED-Egg	model.	The	y-axis	denotes	
a	molecule’s	lipophilicity	(as	a	predicted	partition	coefficient	between	
water	&	octanol,	WLOGP),	the	x-axis	its	apparent	polarity	(as	a	polar	
surface	area,	TPSA).	The	graph	predicts	its	passive	Human	Intestinal	

Absorption	(HIA,	white	ellipse)	&	its	permeation	through	the	Blood-Brain	
Barrier	(BBB,	yellow	‘yoke’).	In	the	grey	region,	molecules	aren’t	predict-
ed	to	be	well	absorbed	when	taken	orally.	A	circle	shows	the	location	of	

the	molecule,	its	colour	denoting	whether	it’s	a	substrate	for	P-
glycoprotein	1	(PGP),	&	hence	whether	it’s	pumped-out	from	the	brain.	

Figure	11	Optimising	the	structure	of	a	drug	candidate	to	prevent	it	
from	accessing	the	brain.	Here,	the	polarity	of	the	molecule	is	in-

creased	by	adding	OH	substituents	to	the	phenyl	group.	

EXERCISES	

1	To	evaluate	the	likely	fate	of	your	o-phenylibuprofen	drug	candidate,	
click	on	the	‘Estimate	molecule’s	fate	in	the	body	with	SwissADME’s	
box	(bottom	box,	Figure	7).	The	results	will	appear	in	a	new	window.	

2	In	the	results	page,	click	on	the	red	box	‘Show	BOILED-Egg’.	
3	 This	 reveals	 a	 graph	 (Figure	 10)	where	 your	molecule	 appears	 as	 a	

coloured	circle.	In	which	region	does	it	fall?	Could	it	be	taken	orally?	
Does	it	reach	the	brain?	Is	it	predicted	to	be	pumped-out	by	PGP?	

4	 Your	molecule’s	 physicochemical	&	 pharmacokinetic	 properties	 are	
listed	below	this	graph	(see	Figure	12).	Inspect	the	‘Medicinal	Prop-
erties’	section.		Are	there	any	toxicity	alerts?	If	so,	what	are	they?	
	

KEY	TERMS	

Physicochemical	properties:	properties	relating	to	the	physical	chemis-
try	of	a	molecule:	its	lipophilicity,	polarity,	polar	surface	area,	etc.		



A Practical Guide to Computer-Aided Drug Design 

 9 

Figure	12	Selected	physicochemical,	pharmacokinetic	&	drug-like	prop-
erties	of	Ibuprofen.	The	Medicinal	Chemistry	heading	is	particularly	

important:	it’s	here	that	toxicity	alerts	are	found.	

The	SwissADME	program	computes	a	range	of	properties	that	are	
important	 in	 determining	 whether	 a	 molecule	 has	 desirable	 drug-
like	properties,	as	illustrated	in	Figure	12.	Particularly	important	here	
are	 those	 properties	 listed	 under	 the	Medicinal	 Chemistry	 heading:	
notably,	the	alerts	for	problematic	molecular	fragments	(those	potential-
ly	toxic,	unstable,	reactive	or	aggregator,	etc.).		

6.3 Predict your molecule’s target protein(s) 
Let’s	now	consider	the	specificity	of	your	drug	candidate	in	terms	

of	 its	 likely	 target	 protein(s).	 To	 do	 this,	 we’ll	 use	 the	 SwissTar-
getPrediction	 tool.	 This	 returns	 a	 table	 of	 the	 15	 most	 probable	
targets	 (by	 similarity	 with	 known	 active	molecules	 targeting	 these	
proteins),	and	provides	links	to	additional	information	in	the	UniProt	
and	ChEMBL	databases	–	see	Figure	13;	it	also	provides	links	to	lists	
of	known	active	molecules	with	similar	2D	or	3D	chemical	structures	
to	your	candidate	molecule	that	could	have	the	same	protein	target.				

Figure	13	Target	proteins	for	Ibuprofen	predicted	by	SwissTargetPredic-
tion.	The	target	name	&	protein	class	are	indicated,	alongside	accession	
numbers	for	entries	in	the	UniProt	&	ChEMBL	databases.	The	probability	
denotes	the	probability	for	Ibuprofen	to	have	these	proteins	as	its	target.	

	

EXERCISES	

1	To	predict	the	 likely	target	protein	for	your	candidate	drug,	click	on	
‘Predict	 possible	 protein	 targets	 with	 SwissTargetPrediction’	 box	
(upper	box,	bottom	of	Figure	7).	The	calculation	will	take	a	couple	of	
seconds	to	run.	The	results	will	be	displayed	in	a	new	window.	

2	Your	candidate	molecule	will	be	shown	at	the	top	of	the	results	page,	
alongside	a	pie-chart	showing	the	classes	of	protein	 it’s	most	 likely	
to	target.	Beneath	this	are	the	15	most	probable	protein	targets.	

3	What	 is	 the	 top	 target	 protein?	Are	 Cyclooxygenase-1	 (COX	 1,	 also	
called	PTGS1)	&	Cyclooxygenase-2	(COX	2,	PTGS2)	in	the	list?		

6.4 Molecular fingerprints 
As	mentioned	 in	Section	5,	 ligand-based	methods	are	one	of	the	

main	forms	of	CADD.	The	rational	here	is	grounded	in	the	similarity	
principle:	i.e.,	similar	molecules	are	likely	to	exhibit	similar	biological	
activities27,28.	 This	 concept	 underpins	 the	 technique	 of	 virtual	
screening,	 where	 libraries	 of	 molecules	 (actual	 or	 virtual	 com-
pounds)	that	are	similar	to	known	active	molecules	are	searched	to	
find	compounds	that	should	be	prioritised	for	experimental	testing.		
Nowadays,	screenable	chemical	libraries	can	contain	hundreds	of	

millions	to	billions	of	molecules.	Dedicated	computer	methods	have	
been	developed	to	rapidly	quantify	similarities	between	them.	One	
such	 method	 uses	 so-called	 ‘molecular	 fingerprints’.	 In	 this	 ap-
proach,	 the	 chemical	 structures	 of	 molecules	 are	 translated	 into	
strings	 of	 0s	 and	 1s	 –	 a	 computer	 then	 ‘sees’	 the	 molecules	 by	
means	of	their	digital	‘fingerprints’29,30.	These	fingerprints	are	creat-
ed	by	breaking	down	the	molecular	structures	into	their	component	
chemical	 fragments;	 the	 presence	 (1)	 or	 absence	 (0)	 of	 each	 frag-
ment	is	then	noted,	as	illustrated	in	Figure	14.	Pairs	of	molecules	can	
then	be	readily	compared	via	their	digital	fingerprints.	

Figure	14	Molecular	fingerprints.	The	presence	(1)	or	absence	(0)	of	
given	chemical	fragments	create	‘fingerprints’	for	molecules	A	&	B.	

KEY	TERMS	

Accession	number:	a	unique	computer-readable	code	given	to	 identify	
a	particular	entry	in	a	particular	database	

ChEMBL:	a	large	&	highly	curated	database	of	molecule	bioactivity 
UniProt:	the	world’s	most	comprehensive	database	of	protein	sequence	

&	functional	information 	
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As	shown	in	Figure	14,	the	fingerprints	of	molecules	A	and	B	are:	
A	=	(0,	1,	0,	1,	0,	0,	1,	0,	0,	…)	
B	=	(0,	1,	0,	1,	0,	0,	1,	0,	1,	…)	

The	similarity	between	these	molecular	fingerprints	can	be	calcu-
lated	using	the	Tanimoto	coefficient	(T)31.	The	value	of	T	 is	derived	
by	dividing	the	number	of	times	1	is	found	in	the	same	position	for	
both	molecules	by	the	number	of	times	1	is	found	in	at	least	one	of	
the	molecules,	as	expressed	in	the	equation	in	Figure	15.	

Figure	15	The	Tanimoto	coefficient	(T).	Comparing	the	similarity	of	two	
molecules,	A	&	B.	The	value	of	T	ranges	from	0	to	1,	for	molecules	that	

are	completely	different	or	identical,	respectively.	

	To	get	an	idea	of	how	this	can	be	applied	in	practice,	we	can	cal-
culate	the	Tanimoto	coefficient	of	short	fingerprints	with	a	restrict-
ed	number	of	 fragments	 for	 the	 set	of	anti-inflammatory	and	anti-
cancer	drugs	shown	in	Figure	16.		

Figure	16	Fingerprint-based	similarity.	The	molecular	fingerprint	of	
Diclofenac	is	illustrated	at	the	top	of	the	figure.	Noting	the	presence	(1)	
or	absence	(0)	of	the	chemical	fragments	shown	allows	us	to	create	the	

corresponding	fingerprints	for	Lumiracoxib,	Erlotinib	&	Gefitinib.	

Table	2	Tanimoto	coefficients	of	anti-inflammatory	&	anti-cancer	drugs	
	 Diclofenac	 Lumiracoxib	 Erlotinib	 Gefitinib	
Diclofenac	 1	 	 	 	
Lumiracoxib	 	 1	 	 	
Erlotinib	 	 	 1	 	
Gefitinib	 	 	 	 1	

	

EXERCISES	

1	 To	 create	 molecular	 fingerprints	 for	 the	 anti-inflammatory	 &	 anti-
cancer	 drugs	 shown	 in	 Figure	 16,	 visit	 the	 following	 website:	
www.drug-design-workshop.ch/pen-and-paper.php	

2	Click	on	he	image	shown	&	print	the	PDF.	
3	 Now	 complete	 the	 pen-and-paper	 exercise,	 as	 follows:	 for	 each	 of	

the	drugs	shown	beneath	Diclofenac,	record	in	the	empty	boxes	the	
presence	(1)	or	absence	(0)	of	the	chemical	fragments	shown	in	the	
panel	above	them.	

4	When	all	 fingerprints	are	completed,	 calculate	 the	Tanimoto	coeffi-
cients	 for	each	pair	of	molecules	using	 the	equation,	and	 following	
the	example,	shown	in	Figure	15.	Populate	the	table	(reproduced	as	
Table	 2	 opposite)	 with	 each	 value.	 Correct	 values	 can	 be	 found	
online	at	www.drug-design-workshop.ch/pen-and-paper.php.	

5	Examine	the	results	in	the	table.	Which	molecules	are	most	similar	–	
i.e.,	likely	to	target	the	same	protein?	

	
The	 exercise	 above	 gives	 an	 idea	 of	 how	 computers	 translate	

molecules	into	fingerprints,	and	quantify	their	molecular	similarity.	
Having	calculated	the	Tanimoto	coefficients,	two	groups	of	similar	

molecules	 emerge	 in	 Table	 2:	 Diclofenac	 and	 Lumiracoxib	 on	 the	
one	 hand,	 and	 Erlotinib	 and	 Gefitinib	 on	 the	 other.	 This	 result	 is	
consistent	 with	 the	 fact	 that	 Diclofenac	 and	 Lumiracoxib	 are	 COX	
inhibitors,	used	to	treat	pain	and	inflammatory	diseases,	while	Erlo-
tinib	 and	Gefitinib	 are	 kinase	 inhibitors,	 used	 in	 cancer	 treatment.	
This	 outcome	 illustrates	 the	 similarity	 principle,	 frequently	 used	 in	
medicinal	chemistry,	which	claims	that	similar	molecules	are	prone	
to	share	similar	biological	activities.	

	

TAKE	HOMES	

Having	 completed	 this	 Practical	 Guide,	 you	 now	 have	 a	 practical	
sense	of	how	to:	

1 Design	a	drug-candidate	molecule,	based	on	a	known	drug	template;		

2 Visualise	in	3D	how	a	drug	candidate	binds	to	a	target	protein;		
3 Optimise	the	docking	score,	or	binding	strength,	of	a	candidate	drug	

with	regard	to	the	binding	strengths	of	known	drugs;	

4 Use	 the	 SwissADME	 software	 tool	 to	 predict	 the	 fate	 of	 a	 drug	 or	
drug	 candidate	 in	 the	 body,	 &	 to	 calculate	 the	 physicochemical	 &	
pharmacokinetic	properties	of	such	molecules;		

5 Infer	 whether	 a	 drug	 candidate	 requires	 chemical	 modification	 to	
optimise	 some	 of	 its	 ADME	 properties	 (such	 as	 absorption	 when	
taken	orally	or	access	to	the	brain);	

6 Use	the	SwissTargetPrediction	software	tool	to	predict	the	specifici-
ty	of	a	drug	candidate	in	terms	of	its	likely	target	protein(s);	&	

7 Quantify	the	similarity	between	molecules	using	the	Tanimoto	coef-
ficient.		
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